KSS HP Ball Screw Lifetime Calculation Prg. Instruction Mannual

【Contents】

1) Applicable Operating Range
2) Entering Items
2)-1: Enter the Basic Information
2)-2 : Ener Ball Screw Specifications
2)-3: Enter Operating Conditions
2)-4: Enter Operating Patterns
3) Calculation Result
3)-1 : Calculation Result Screen
3)-2 : Printing Calculation Result
4) Entering different Operating Pattern
4)-1 : Only Transport or Movement
4)-2 : Triangle drive
4)-3: Calculating with only Load and Speed
5) Error checking and Warning message
5)-1 : Error checking function

5)-2 : Warning message
6) Appendix
(Concepts of Lifetime Calculation formula)

1) Applicable Operating Range

- This Program (Prg.) is applied for two kinds of general Horizontal Shaft and Vertical Shaft, not for Inclined Shaft.
- Applicable operating pattern for Horizontal and Vertical Shaft are as the following Operating Cycle Chart.
- Operating Cycle Chart is set not only rapid positioning for Acceleration, Constant speed and Deceleration, but also some movements (grinding at low speed etc.) are into consideration.
- Operating condition differences between forward and backward movement is into consideration.
- The following operating conditions are also available by changing values in Operating Cycle Chart: only reciprocation with no task, Triangle drive with no Constant speed area, and simply calculating with only load and speed.

2) Entering Items

2)-1 : Enter the Basic Information

- Please enter required items referring each explanation on screen.
- Placing your cursor over "?" mark appears each explanation regarding entering items.

2)-2 : Enter Ball Screw Specifications

- Model Description, Basic Load Rating Ca, and Lead Ph require to be entered directly, not multiplechoice. To have versatility, it is not quoted from a database, entering directly.
Please enter values referring from KSS catalogue or your drawing.
- Selecting Preload type makes Preload Fpr calculated automatically 5 \% of Basic Dynamic Load Rating (Standard value). You can revise Preload Fpr if you set it larger for rigidity up.

2)-3: Enter Operating Conditions

【Operating Cycle Chart and Load Direction】

- Selecting Position (Horizontal or Vertical) in Operating Condition appears the Load direction diagram and Operating Cycle Chart.
- Please enter values, External Load $\mathrm{Q}_{1}, \mathrm{Q}_{2}$, Mass m, and Sliding Resistance P etc., referring explanations.
- Load direction affects Lifetime Calculation, so please enter value carefully.

2)-3: Enter Operating Conditions

【No Movement task-1,2 (Only transferring)】

- If there is no task-1,2 (4),(8), please enter 0 in External Load $-1\left(\mathrm{Q}_{1}\right)$ and External Load $-2\left(\mathrm{Q}_{2}\right)$.

2)-4: Enter Operating Patterns

【Contrast of Operating Cycle Chart and Operating Table】

- The number of Operating Cycle Chart and Operating Table are in pairs.

Please enter operating conditions (Speed V, Operating Time t) referring Operating Cycle Chart.

- Regarding Speed V (mm/s) at Acceleration and Deceleration, please enter value of Maximum Speed (Constant speed) (2).

2)-4: Enter Operating Patterns

【Triangle drive (No Constant speed area)】

- When it is Triangle drive without any Constant speed area (2), please enter value of Maximum Speed V in Acceleration and Deceleration (1)(3) and enter 0 in Operating Time t of Constant speed area (2).

2)-4 : Enter Operating Patterns

【Entering Operating Cycle of Movement task-1,2】

- Acceleration and Deceleration is not into consideration in task-1,2 (4),(8), therefore, please enter only Speed conditions (Maximum Speed V and Operating Time t).
In this case, External Load-1,2 $\left(\mathrm{Q}_{1}, \mathrm{Q}_{2}\right)$ is required to be entered.

If you do not enter value of External-1 $\quad\left(\mathrm{Q}_{1}\right)$, neither (4) nor (8) cannot be entered.

2)-4 : Enter Operating Patterns

【Entering Cycle time】

- Please enter the total of operating time and holt time (reciprocation) in Cycle Time as shown in Operating Cycle Chart.

Cycle time is one reciprocation operating time including holt time.

3) Calculation Result

3)-1 : Calculation Result Screen

【Calculation Result Button】

- Clicking "Calculation Result" button appears calculation result on the other page.
- Updated result tab is added when you back to the entering screen, re-enter operating conditions, and click the Calculation Result button.

3)-1 : Calculation Result Screen

【Calculation Result Screen】

- Each operating pattern of Acceleration α, Rotational Speed N, and Load F are calculated and shown on the sheet below.

(Note) Leftward load: +, Rightward load: -					
Operating Condition	Maximum Speed:V (mm/s)	Operating Time:t (s)	Acceleration:a $\left(\mathrm{m} / \mathrm{s}^{2}\right)$	Rotational Speed:N $\left(\mathrm{min}^{-1}\right)$	Load: F (N)
(1) $\begin{gathered}\text { Forward } \\ \text { Acceleration }\end{gathered}$	100.00	0.100	1.00	1,500.00	59.52
Forward ${ }^{2} \quad$Forward at Constant speed		0.500	n/a	3,000.00	34.52
Movement ${ }_{\text {(3) }}$ (4)Forward Deceleration		0.100	1.00	1,500.00	9.52
(4) On-load 1 Constant speed	5.00	0.500	n/a	150.00	39.52
(5) $\begin{gathered}\text { Backward } \\ \text { Acceleration }\end{gathered}$	100.00	0.100	1.00	1,500.00	-59.52
Backward ${ }^{6}$ (Backward at Constant speed		0.500	n/a	3,000.00	-34.52
Movement ${ }^{(7)}$Backward Deceleration		0.100	1.00	1,500.00	-9.52
(8) On-load 2 Constant speed	5.00	0.500	n/a	150.00	0.00
	Cycle Time	7.000			
	Operating time	2.400			
	Halt time	4.600			

<Calculation Result >

Rating Lifetime $\mathbf{L}_{\mathbf{1 0}}:$ (Merged)	$1,066.38 * 10^{\wedge 6} \mathrm{rev}$.
	$2,132.75 \mathrm{~km}$
	$10.66 * 10^{\wedge 6} \mathrm{Cycle}$ (reciprocation)
Rating Lifetime $\mathbf{L}_{\mathbf{1 0}}:$ (Halt time is in considered.)	$9,188.72$ hours
	$26,800.43$ hours

[^0]The calculation result is based on JIS B1192-5, however, please note that this is for reference purpose only and we cannot guarantee the values. We shall not take any responsibilities for any damages and troubles through this calculation. For more information regarding calculation result, please contact us $+81-3-3756$ -

- Calculation Result is shown on "Calculation Result" part. Actual operating Lifetime and Lifetime considering holt time are calculated. Acceleration α, Rotational Speed N, and Load F are calculated on each operating patterns.

This shows Calculation Result.
The upper part is actual operating time and the lower part is Lifetime considering holt time.
\qquad

3)-1 : Calculation Results Screen

【 Calculation Result -Load Direction-】

- The notation of Load F minus (-) in Operating Cycle Chart means that load direction is opposite, not an error.

【 Calculation Result-Rating Lifetime L_{10}-】

- Calculation Result is shown in four items: Total number of revolution (rev.), Travel distance (km), Number of reciprocation (cycle), and Operating time.
- Number of reciprocation is calculated based on one side stroke (mm) entered.
- Rating Lifetime L_{10} considering holt time is shown hourly, daily and yearly basis.

[^1][^2]Actual operating Lifetime is shown each items: Total number of revolution (rev.), Travel distance (km), Number of reciprocating (cycle), and Operating time.

Rating Lifetime including holt time is shown hourly, daily and yearly basis.

【Calculation Progress】

- Clicking "Show Progress" button appears a table below.

This shows load distribution of contact point under each operating conditions and you do not need to concern about it. For further information, please contact KSS.

- Clicking "Print" button enables you to print in A4 size as the screen image.
- PDF files are available.
- Progress table cannot be printed and only input value and calculation result can be printed.

4) Different Operating Pattern

4)-1 : Only Transporting or Movement

【Only Transporting or Movement】

- Simply rapid movement (1)~(3), (5)~(7) is repeated and no task-1,2 (4)8) on Operating Cycle Chart, entering 0 in (4) and (8) calculation works.
- Entering 0 in each External Load-1,2 $\left(\mathrm{Q}_{1}, \mathrm{Q}_{2}\right)$ in Operating Condition is required.

Please enter 0 in External Load-1,2 if it is only reciprocation movement and no task -1,2 (4)(8).

4)-1 : Only Transporting or Movement

【Reciprocation/ Upward and Downward Movement pattern is same】

- Please enter the same value even if operating condition of reciprocation (forward/backward, upward/downward) is same, do not omit backward or downward. It can differ load distribution of load direction or contact point and it also leads to different result.

< Operating	Please enter the same value even if operating condition of reciprocation (forward/backward, upward/downward movement) is same.						
	Operating \&ondition			$\begin{aligned} & \text { num Speed:V } \\ & (\mathrm{mm} / \mathrm{s}) \end{aligned}$		ating (s)	Time:
Forward Movement	(1)	Horward Acceleration	$? 100.00$ [0.00-9999]			0.100	[0.000-999]
	(2)	Forward at Constant speed			?	0.500	[0.000-999]
	(3)	Forward Deceleration				0.100	[0.000-999]
	(4)	On-load 1 Constant speed	?	0.00 [0.00-9999]	?		[0.000-999]
	(5)	Backward Acceleration				0.100	[0.000-999]
Backward Movement	(6)	Backward at Constant speed	$? 100.00$ [0.00-9999]			0.500	[0.000-999]
	(7)	Backward Deceleration				0.100	[0.000-999]
	(8)	On-load 2 Constant speed		0.00 [0.00-9999]	?	0	[0.000-999]
Cycle Time					?	7.000	[0.000-9999]

- Please enter 0 in Operating Time of Constant speed area (2)(6) when it is triangle drive (only Acceleration and Deceleration) with no Constant speed area such as High speed oscillating movement.

Entering 0 in Operating Time t of Constant speed area becomes Triangle drive.

Speed ($\mathrm{mm} / \mathrm{sec}$)

Operating Cycle Chart

(Triangle drive)

Rapid forward movement

100
00 (1) (3)
Rapid backward movement

4)-3 : Calculating with only Load and Speed

- Acceleration and Deceleration conditions are not decided and if you require approximate Rated Lifetime with only Applying Load and Speed, entering value only External Load-1 or -2 enables calculate.
- For example, calculating with only external load 300 N and Speed $10 \mathrm{~mm} / \mathrm{s}$ is shown below.
- Regarding Operating Time, entering the same value as Cycle time works.

- Error checking function is available if entering value is not correct.
- Please follow direction on screen appearing above and revise value.

【Out of range value】

- The following number of entering digits are limited: Basic Dynamic Load Rating Ca, Lead Ph, External Load-1,2 (Q1,Q2), Mass m, Slide Resistance P, Maximum Speed V, and Operating Time t

5)-1: Error checking function

【Inconsistent input value between External Load -1,2 ($\left.\mathrm{Q}_{1}, \mathrm{Q}_{2}\right)$ and Operating Cycle (Case 1)】

- External Load - $1,2\left(\mathrm{Q}_{1}, \mathrm{Q}_{2}\right)$ is 0 which means external load is not applied, however, what if Speed V or Operating Time t are entered.

- When External Load-1,2 $\left(\mathrm{Q}_{1}, \mathrm{Q}_{2}\right)$ are Static Load, it does not effect to Ball Screw Lifetime. Please enter 0. In this case, this calculation Prg. is not applied, only for comparison with Basic Static Load Rating Coa.

> When External Load $-1 Q_{1}$ is 0 , please enter 0 in Speed V and Operating Time t.
> It means that there is no operating condition because External Load Q is not applied.

If External Load -1 Q_{1} or -2
Q_{2} were entered, neither Speed V nor Operating Time t cannot be entered.

5)-1: Error checking function

【 Inconsistent input value between External Load -1,2 ($\left.\mathrm{Q}_{1}, \mathrm{Q}_{2}\right)$ and Operating Cycle (Case 2)】

- Even though External Load -1,2 $\left(\mathrm{Q}_{1}, \mathrm{Q}_{2}\right)$ is
entered, what if Speed V or Operating
Time t is entered 0 in Operating Cycle Chart.
Entering value in External Load $-1 \mathrm{Q}_{1}$ requires to enter Speed V and Operating Time t.
That is applying External Load Q_{1} (Dynamic Load)

- When External Load-1,2 $\left(\mathrm{Q}_{1}, \mathrm{Q}_{2}\right)$ are Static Load, it does not effect to Ball Screw Lifetime.

Please enter 0.
In this case, this calculation Prg. is not applied, only for comparison with Basic Static Load Rating Coa.

5)-1: Error checking function

【Cycle time (including holt time) is shorter than Operating Time】

- This Cycle Time includes holt time, so please enter value more than the total of Operating Time t.
- Please enter the same value that total of Operating Time if there is no holt time.

www.kssballscrew.com says
Please enter the total Operating time or more. Input value is less than the total Operating time (2.800).

5)-2 : Warning message

- You can enter value in Operating Cycle Chart, however, when Rotational speed or Acceleration exceeds its usage limit, error message appears and value exceeding limits are written in red.
- Reviewing Operating Conditions on screen is recommended.

< Operating Pattern >					(Note) Downward load: +, Upward load: -		
Operating Condition			Maximum Speed:V (mm/s)	Operating Time:t (s)	Acceleration:a ($\mathrm{m} / \mathrm{s}^{2}$)	Rotational Speed:N $\left(\mathrm{min}^{-1}\right)$	Load:F (N)
Down	(1)	Down \& Acceleration	200.00	0.002	100.00	3,000.00	-460.97
	(2)	Down \& Constant speed		1.000	n/a	6,000.00	39.04
	(3)	Down \& Deceleration		0.002	100.00	3,000.00	539.04
	(4)	On-load Constant speed	0.00	0.000	n/a	0.00	0.00
Up	(5)	Up \& Acceleration	200.00	0.002	100.00	3,000.00	559.04
	(6)	Up \& Constant speed		1.000	n/a	6,000.00	39.04
	(7)	Up \& Deceleration		0.002	100.00	3,000.00	-440.97
	(8)	On-load Constant speed	0.00	0.000	n/a	0.00	0.00
			Cycle Time	3.000	^ Lifetime calculation was done under the input operating conditions, Acceleration and but the rotation speed is extremely harsh. Please contact KSS for availability to use. \qquad		
			Operating time	2.008			
			Halt time	0.992			

Load F written in red means that direction of Load F is opposite. This is not error.

Error message
Checking function is available for
Rotational Speed N and Acceleration α.

6) Appendix (Concept of Life Calculation formula)

- This Lifetime Calculation Prg. is based on JIS B1192-5 (ISO3408-5) .
- Rating Life is calculated at each contact point and merged Basic Rating Life of both contact points based on a basic formula of Basic Rating Life.
- The following conditions are into consideration: Ball contact point is changed depending on load direction. Elastic displacement of contact point is changed when external load is applied in Preload status.


```
Once load direction is changed, Ball contact points are also changed.
Rating Life is calculated at each contact point and using merged value.
```

Ball contact condition by load direction

Lifetime is calculated by value of Axial load that equivalent to size of contact point.

Ball contact condition under Preload (Left) and external load (Right)

CREATIVE MOTION SYSTEMS
Advanced Technology of＂Miniature＂ ＞＞＞洗練されたミニチュアの技術

If you have any questions，please feel free to contact KSS．

[^0]: Show progress Print (<Page Setup>Paper Size: A4 Portrait, Margins: minimum, Header and Footer: Hide)

[^1]: Show progress Print (<Page Setup>Paper Size: A4 Portrait, Margins: minimum, Header and Footer: Hide)

[^2]: The calculation result is based on JIS B1192-5, however, please note that this is for reference purpose only and we cannot guarantee the values. We shall not take any responsibilities for any damages and troubles through this calculation. For more information regarding calculation result, please contact us +81 -3-37563921, or intldept@kss-superdrive.co.jp .

